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Abstract— As the push towards electronic storage, 
publication, curation, and discoverability of research 
data collected in multiple research domains has grown, 
so too have the massive numbers of small to medium 
datasets that are highly distributed and not easily 
discoverable – a region of data that is sometimes 
referred to as the long tail of science. The rapidly 
increasing, sheer volume of these long tail data present 
one aspect of the Big Data problem: how does one more 
easily access, discover, use, and reuse long tail data to 
lead to new multidisciplinary collaborative research and 
scientific advancement? In this paper, we describe 
DataBridge, a new e-science collaboration environment 
that will realize the potential of long tail data by 
implementing algorithms and tools to more easily enable 
data discoverability and reuse. DataBridge will define 
different types of semantic bridges that link diverse 
datasets by applying a set of sociometric network 
analysis (SNA) and relevance algorithms. We will 
measure relevancy by examining different ways datasets 
can be related to each other: data to data, user to data, 
and method to data connections. Through analysis of 
metadata and ontology, by pattern analysis and feature 
extraction, through usage tools and models, and via 
human connections, DataBridge will create an 
environment for long tail data that is greater than the 
sum of its parts. In the project’s initial phase, we will 
test and validate the new tools with real-world data 
contained in the Dataverse Network, the largest social 
science data repository. In this short paper, we discuss 
the background and vision for the DataBridge project, 
and present an introduction to the proposed SNA 
algorithms and analytical tools that are relevant for 
discoverability of long tail science data. 
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I.  INTRODUCTION  
With the internet celebrating over a quarter century of 

existence, electronic storage and publication of data has 

become almost second nature to most scientists. In the past 
few years, the push towards open access and discoverability 
of research data has grown, as evinced by a White House 
Office of Science and Technology Policy memo addressing 
open access to data and directing federal agencies to provide 
funding towards initiatives that increase accessibility of 
publicly-funded research [1]. Contemporaneously, there has 
been a rapid growth in the large numbers of small datasets 
that are highly distributed, not well organized or curated, 
and thus are not easily discoverable or reusable. These 
datasets typically exist in total isolation from each other, are 
individually managed, and suffer from sparse and 
inconsistent provenance and metadata. Palmer et al. [2, 3] 
refer to these as the “long tail of science” data – the massive 
number of relatively small datasets which currently make up 
the largest proportion of scientific research data.  

Though these datasets are small and individually easy to 
manage, they contain rich information that can be used and 
reused to maximize new scientific discoveries – if the data 
are easily discoverable, accessible, and analyzable. 
Discovering long tail data is hard because the data is often 
distributed in personal workspaces with little attempt made 
at data publication. Finding relevant data is made even more 
problematic by the difficulty in defining relevancy metrics 
for scientific datasets. Accessing relevant data is not easy 
when the data are distributed, not well documented, and in 
heterogeneous and possibly unique formats. These same 
characteristics also inhibit the analysis of data and are a 
major obstacle to generating new knowledge from this type 
of research data. 

While we often use the term ‘Big Data’ to refer to very 
large datasets that pose problems in management and 
analysis due to their sheer size, these only represent one 
aspect of the Big Data problem. The rapidly-growing 
amounts of long tail data pose a different, yet fundamental, 
Big Data problem: how do we enable easier discoverability, 
use, and reuse of the massive number of smaller datasets 
that exist in almost total isolation from one another? How 
do we determine what datasets are relevant to others, and 
thus make discoverability of these relevant data easier? In 
this paper we discuss the DataBridge [4, 5], a collaborative 



tool to address some of the challenges associated with long 
tail data. 

DataBridge is an NSF-funded collaboration between 
University of North Carolina at Chapel Hill, Harvard 
University, and North Carolina A&T State University to 
develop an e-Science environment that measures 
relationships between different datasets. In the DataBridge, 
similarity and relevancy of long tail data will be assessed on 
four general aspects: the contents of the data itself, 
contextual information about the data, producers and 
consumers of the data, and methods used to create and 
analyze the data. Using these relationships, we can discover 
and maintain profiles and clusters for datasets to help 
researchers seek, search, browse and identify data relevant 
to their work.  

In the next section of this paper, we discuss the 
overarching vision for the design of the DataBridge. Section 
III of the paper further discusses the concept of sociometric 
network analysis (SNA) and details various methods used to 
measure the relevance relationships among datasets. Section 
IV presents related works, with a conclusion in Section V. 

II. DATABRIDGE VISION 
DataBridge is an indexing mechanism for scientific 

datasets, similar to web search engines that help find web 
pages of interest. Unlike web search engines that use the 
textual content of a web page and hyperlinks to identify its 
relevance to a query, the search space for scientific datasets 
is quite different and needs external resources such as tags, 
metadata, contexts, and naming conventions to identify 
relevancy. As discussed in the introduction, typical long tail 
datasets in isolation provide very sparse information content 
for search and discovery.  

A resource discovery system for scientific datasets 
should provide a rich set of tools for mining information and 
context. To this end, the DataBridge system will analyze 
linkages between datasets. It will gather data, metadata, 
usage and other information, and apply SNA algorithms to 
map datasets connected by multi-dimensional relationships. 
In this multi-dimensional network, sub-graphs, clusters, and 
cliques will be used to inform the discovery of other relevant 
datasets.  
     Even though a large number of datasets still remain only 
stored in personal workspaces, without formal organization 
and metadata, successful efforts have been made to provide 
centralized data repositories to properly share, manage and 
archive scientific datasets. These efforts include the 
Dataverse Network (DVN) and the Integrated Rule-Oriented 
Data System (iRODS). In the initial phase, DataBridge will 
draw upon these existing systems because they offer a rich 
set of real-world structured data and metadata that will help 
validate the algorithms and analysis. The DVN is an e-
Science collaboration environment used to publish, share, 
reference, extract and analyze research data [6, 7, 8, 9, 32].  
Together, University of North Carolina and Harvard 
University host DVN instances containing over 50,000 
research studies with more than 700,000 data and 

supplementary files in social science. We chose the DVN as 
a starting point because of its richness of data, but also 
because the DVN facilitates long term access and good data 
archival practices while the researcher retains control of, 
and recognition for, the data he or she deposits.  iRODS is a 
data grid middleware [10, 11, 12, 13, 14, 15] which 
provides many facilities for collection building, managing, 
querying, accessing, and preserving data in a distributed 
data grid framework. The iRODS system applies policy-
based control when performing these functions. 

DataBridge will eventually gather information from 
multiple data resources maintained by individuals, projects, 
regional or disciplinary repositories, and national 
collaboratives. This information will be integrated into a 
semantically-rich interface that will allow discoverability of 
relevant datasets based on relationships between data, users, 
methods and metadata. Internally, it will apply several 
relevance algorithms, described in the next section, to build a 
knowledge base and generate interconnected networks. The 
DataBridge will provide a venue for scientists to publish, 
discover, and access data of importance and to find others 
engaged in similar and pertinent research. The resulting 
networks and additional information gathered by DataBridge 
will be transferred back to permanent data repositories such 
as DVN, to facilitate discoverability within the repository 
and automatically enhanced the curation of datasets. 

Given a set of criteria such as a sample dataset, 
DataBridge will query its knowledge base to find relevant 
datasets that are close to the initial dataset based on the given 
criteria. To do this, the architecture of DataBridge will 
consist of three functional units:  a data gatherer which 
interacts with data repositories to gather information about 
scientific datasets, a relevance engine which integrates 
information about datasets into a relevance network based on 
sociometric analysis, and a web-based user interface which 
searches for relevant datasets and gathers information 
through crowd sourcing and collaborative tagging.  

In the following section, we describe the proposed SNA 
and relevancy measures to be applied in the DataBridge. 

 

III. SOCIOMETRIC NETWORK ANALYSIS FOR LONG TAIL 
SCIENCE DATA 

The DataBridge effort will create a semantically-rich, 
cross-disciplinary, sociometric network using modern 
information network analysis tools that build on seminal 
work by Jacob L. Moreno [16]. Moreno described 
sociometry as “the inquiry into the evolution and 
organization of groups and the position of individuals within 
them.” Moreno pioneered the depiction of social 
relationships between people through sociograms – graphs 
that symbolize individuals as nodes connected by links, or 
edges. DataBridge will be the first attempt to apply 
sociometry and its derived techniques to the study of 
scientific datasets. 

 



A. Sociometric Network Analysis Algorithms 
 Successful sociometric algorithms hinge upon 

adequately detecting community structure, or clustering, in 
real systems. Though many disciplines, including sociology, 
biology, and computer science, often represent individuals as 
graphs, how to detect ‘community’ has not yet been 
satisfactorily solved, despite the huge effort [17, 18, 19] of a 
large interdisciplinary community of scientists over the past 
few years. Building upon the efforts of this previous work, 
we will explore a broad range of community detection 
methods for DataBridge.  

The main elements of the problem of community 
detection in graphs are not defined – indeed, there is not a 
current, universally accepted definition of ‘community’ [17, 
18, 19]. For the purposes of graph clustering, we define 
communities as groups of nodes similar to each other. 
Similarity between each pair of nodes can be computed with 
respect to a previously assigned reference property, whether 
or not the nodes are connected. Each node is assigned to the 
cluster of nodes most similar to it. If the graph nodes are 
embedded in an n-dimensional Euclidean space, the distance 
between a pair of nodes can be used as a measure of 
similarity. For the design of the Databridge, we will 
investigate several algorithms to quantify clustering 
including: relative proximity, cosine similarity, dissimilarity, 
random walk, and resistance distance measures.  

The relative proximity between any two data points 
A=(a_1,a_2, … ,a_n) and B=(b_1,b_2, … ,b_n) can be 
measured by any norm L_m, such as the Euclidean distance 
(L_2- norm [SM1]), the Manhattan distance (L_1-norm 
[SM2]), or the L_∞-norm [SM3]. Another popular spatial 
measure is the cosine similarity [SM4]. If the graph cannot 
be embedded in space, similarity must be inferred from the 
adjacency relationships between nodes. Another possibility 
based on the concept of structural equivalence [SM5] [32] 
defines the distance between nodes [20] as a dissimilarity 
measure: two nodes are structurally equivalent if they have 
the same neighbors, even if they are not adjacent themselves. 
Using the dissimilarity measure, d_ij=0 if i and j are 
structurally equivalent. Nodes with large degree and different 
neighbors are considered very “far” from each other and will 
have a greater dissimilarity measure. Alternatively, one 
could measure the overlap between the neighborhoods Γ(i) 
and Γ(j) of vertices i and j, given by the ratio between the 
intersection and the union of the neighborhoods [SM6]. 
Another measure related to structural equivalence is the 
Pearson correlation [SM7] between columns or rows of the 
adjacency matrix.  Table 1 is a summary of these measures. 

An alternative measure is the number of edge- (or node-) 
independent paths between two nodes. Independent paths do 
not share any edge (node), and their number is related to the 
maximum flow that can be conveyed between the two nodes 
under the constraint that each edge can carry only one unit of 
flow (max-flow/min-cut theorem) [21]. The maximum flow 
can be calculated in a time O(m), for a graph with m edges, 
using techniques like the augmenting path algorithm. 
Similarly, one could consider all paths running between two 
nodes. In this case, there is the problem that the total number 

of paths is infinite, but this can be avoided if one performs a 
weighted sum of the number of paths. For instance, paths of 
length L can be weighted by the factor α^l, with α<1. 
Another possibility, suggested by Estrada and Hatano [22, 
23], is to weigh paths of length L with the inverse factorial 
1/l!. In both cases, the contribution of long paths is strongly 
suppressed and the sum converges. 

Random Walk properties provide another class of 
measures of node similarity that can be used in sociometric 
network analysis of long tail data. For example, one random 
walk property measures the commute time between a pair of 
nodes, or the average number of steps needed for a random 
walker, starting at either node, to reach the other node for the 
first time and to come back to the starting node.  

The commute time and various variants have been used 
as a similarity measure by Saerens and coworkers [24, 25, 
26, 27]: the larger the time, the farther (less similar) the 
nodes. The commute time [28] is closely related to another 
measure, the resistance distance [29]. The resistance distance 
expresses the effective electrical resistance between two 
nodes if the graph were turned into a resistor network. White 
and Smyth [18, 30] used instead the average first passage 
time, i.e. the average number of steps needed to reach for the 
first time the target node from the source. 

 

B. Relevance Algorithms:  
In order to connect disparate datasets in a network and 

discover multidimensional similarities, we will research and 

Table 1. Similarity Measures (SM) 
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implement several types of relevance metrics. These metrics 
can be broadly grouped into: data to data connections, user to 
data connections, and method to data connections, as 
described below. 

1) Data to Data Connections: The ability to understand 
and connect data across data types and research disciplines 
hinges on the quality of metadata available to describe these 
data. The current process of creating metadata is very labor- 
and time- intensive. Many long tail data suffer from sparse 
metadata because archives and repositories are forced to 
make a tradeoff to process many datasets with minimum 
description or to process fewer datasets and take time to 
create more detailed metadata. The DataBridge will include 
a service that generates metadata based upon the results of 
relevance engine processing. This new interface will 
automatically suggest topics and keywords to researchers 
uploading and ingesting data into repositories by pre-
tagging the projected topic space with appropriate terms. 
Accurate suggestions will encourage accurate crowd 
sourced tagging of the ingested data. This researcher 
guided/machine-learning metadata creation environment 
will have a profound impact on the future of data discovery 
and reuse [31].  

As we build the data to data relevancy engine, we will 
compare different probabilistic topic models to determine 
which work best to cluster a corpus of short abstracts, 
explore effective metrics for sampling the abstracts to be 
projected together using these models, and methods to 
effectively scale these models (i.e. layer the topic space). We 
will further compare the effectiveness of these methods to 
random projections, which can scale to handle a large 
corpus.  

Semantic similarity of datasets can be measured by 
applying technologies in Natural Language Processing 
(NLP) to infer the topic space as latent classes. Methods such 
as Probabilistic Latent Semantic Analysis (PLSA) can 
effectively account for both synonyms (words that refer to 
the same topic) and polysemy (words with multiple 
meanings) in a corpus of abstracts by modeling each 
document as a mixture of topics, each being a unigram 
model.  

2) User to Data Connections: Using the DVN as a 
starting point for modeling user to data connections, we are 
able to search metadata fields including authors, producers, 
distributors, provenance, and geographic and time coverage 
of a dataset. DataBridge will extend beyond the current 
manual, passive search options and will allow for better 
understanding of and even prediction of possible future 
collaborations.  We will crawl published papers that use 
DVN data to identify datasets from past collaborations and 
explore collaboration patterns along features in the given 
datasets. Using these patterns and some of the similarity 
measures discussed in Section III B, we will build models of 
collaboration to predict data connections.  

3) Methods to Data Connections: The use of particular 
models and methods to analyze datasets provides rich data 
for mining sociometric information. Usage methods and 
applications can be viewed as properties of the datasets and 
can be used to determine relevance between datasets. Since 
scant research has been conducted on measures of similarity 
between research methods and long tail data, an ontology of 
methods, tools, and applications needs to be defined. From 
this information, we plan to implement relevance algorithms 
that will use the method ontology to help define a relevance 
network. 

4) Interactive Connections: Some of us (King and 
Crosas together with Grimmer, Stewart and members of the 
Harvard's IQSS software team) are working on a computer-
assisted method to discover clusters (or partitions) in large 
corpora of unstructured text [46]. This method differs from 
the ones mentioned above because it allows users to interact 
with the clustering space until they find a result useful and 
tuned to their needs. 

IV. RELATED WORK 
Currently, there are several national consortium-based 

projects including DataONE (Dataone) [33], Datanet 
Federation Consortium (DFC) [34], the Consortium of 
Universities for the Advancement of Hydrologic Science 
(CUHASI) [35], iPlant Consortium (IPC) [36], and the 
Ocean Observatories Initiative (OOI) [37] that collect and 
provide access to disciplinary data collections. Additionally, 
scientific collaboration tools have been developed that help 
scientists build collections for their projects.  These include 
systems such as iRODS, the DVN, Fedora Commons 
(DuraSpace), and LOCKSS (lockss).  

What’s lacking from these efforts is a network that 
connects datasets such that the whole becomes greater than 
the sum of its parts – connections based on similarities 
beyond normal textual connections within the silos of single 
disciplines.  Missing from these works also is an explicit 
focus on the relationships among datasets.   

Other researchers have begun to explore how to link 
datasets.  Tools such as Scival Experts, CiteSeerX and 
DataCite, for example, are designed around metadata 
schemas. SciVal Experts derives relationships between 
publications and experts by coauthorship and keywords, but 
does not address datasets per se. CiteSeerX includes some 
additional techniques such as automatic metadata harvesting 
from indexed articles and crowd sourcing of opinions about 
articles, but still does not address datasets. DataCite is 
designed to make it easier for researchers to find relevant 
datasets by collecting metadata, providing a search 
capability, and assigning persistent data identifiers to assist 
in citing and publication, but it lacks any of the sociometric 
infrastructure we intend to build in the DataBridge.  

In relation to scholarly communication, the role of 
automatic metadata generation is being researched and tested 
as a method to help increase discoverability, access, and 
efficiency [38, 39, 40].  In today’s digital information age, 
many now consider datasets unique units of scholarly 



communication in their own right [41, 42]. SEAD [43] is 
also concerned with sustainability of datasets in the long tail 
of science and proposes to provide a data repository for 
scientists to manage, share, and link their data with others. 
However, the linking is done manually by users and not 
through automatic analysis as proposed here. The Linked 
Data project [44] links data through the use of a data 
description language, but the description is not generated by 
analysis as we propose. Google Scholar allows the user to 
search a wide variety of sources, including books and some 
web sites, but has neither a sociometric component nor a 
focus on datasets. Google does focus on the sociometry of 
datasets, but these datasets are limited to what are presented 
on HTTP servers that can be crawled and are normally 
unstructured text or images. Another related project is the 
CASRAI program [45], which is focused on developing 
common metadata standards to allow for linking research 
information to facilitate data exchange, collaboration, and 
interaction with funding agencies. 

V. CONCLUSION 
This paper outlines the background and vision behind 

DataBridge – an e-Science collaboration system that enables 
researchers to discover relevant datasets in the long tail of 
science data by applying SNA algorithms and multiple 
dimensions of relevancy between datasets. Work is 
underway in developing this framework and implementing 
and evaluating the DataBridge system.  
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