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ABSTRACT  

The rapid increase in the amount and diversity 
of data collected in multiple scientific domains 
implies a corresponding increase in the potential 
of data to empower important new collaborative 
research.  However, the sheer volume and 
diversity of these datasets present new 
challenges in locating data relevant to a 
particular line of research.  The explosion of 
data has taken two primary forms:  the 
emergence of extremely large individual 
datasets and the proliferation of a massive 
number of small to moderately sized datasets.  
This project focuses on the latter – a region 
sometimes called the long tail of science. 
Realizing the potential of data in the long tail of 
science requires investigating algorithms and 
designing tools that will enable important new 
multidisciplinary collaborative research at scales 
ranging from small teams focused on relatively 
simple issues to large collaborations 
investigating grand challenge problems.  In 
short, we need a way to make long tail data 
something greater than the sum of its parts. The 
DataBridge is a new e-Science collaboration 
environment tool being designed and developed 
specifically for this purpose.  The DataBridge 
will exploit a rich set of sociometric network 
analysis (SNA) and relevance algorithms to 
define different types of semantic bridges that 
link diverse datasets. DataBridge will enable 
discovery of relevant datasets and methods by 
computing metrics in multiple spaces of 
relevancy – different ways data can be related 
to each other – by metadata and ontology, by 

pattern analysis and feature extraction, through 
usage tools and models, and via human 
connections. In the initial phase of this project, 
we will integrate DataBridge with the Dataverse 
Network (the largest social science data 
repository) to test and validate the new tools 
with real-world data. In this paper, we discuss 
the motivation for the DataBridge project, 
introduce concepts in SNA relevant for long tail 
science data and their application in designing 
the DataBridge, and detail our anticipated 
implementation strategy.  
 

I   INTRODUCTION 

The term ‘Big Data’ is often used as a synonym 
for ‘very large’ datasets that pose problems in 
management and analysis due to their sheer 
size. Generally these datasets are generated by 
a limited number of data producers and from a 
small number of distributed experimental or 
commercial sites each having a small number of 
homogenous formats, types, or schemas. 
Provenance and description of these datasets 
are well defined, with metadata that is 
sometimes generated automatically as the data 
is collected. The data may contain thousands of 
variables or more, but their description is often 
contained in a single coherent metadata record. 
The location, availability, and usage of this type 
of Big Data is often linked to large observatories 
or data centers, with dedicated staff responsible 
for collecting the data and managing the 
associated metadata. These data have real 
problems that require real solutions, but they 
represent only one aspect of the Big Data 
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problem. While these individually very large 
datasets are becoming more common, far and 
away the largest proportion of scientific 
research still uses datasets from what Palmer et 
al. [1, 2] described as the “long tail of science” 
data – the massive number of relatively small 
datasets. 

These long tail datasets are small and easily 
managed individually. Collectively, however, 
they are quite heterogeneous and growing 
rapidly in number.  Taken together these 
datasets represent a fundamental Big Data 
problem.  A major obstacle to generating new 
knowledge from this type of research data is the 
atomistic way in which the vast majority of it is 
currently collected, archived, and analyzed. 
Long tail data suffer from sparse provenance 
and metadata, which even when available can 
be highly idiosyncratic. Moreover, these data 
are often highly distributed (stored in multiple 
locations, often in personal repositories), not 
very well organized or managed, and not easily 
re-discoverable and re-usable.  In other words, 
while one kind of Big Data problem is the single 
massively large dataset, a more fundamental 
problem is the massive number of smaller 
datasets that exist in almost total isolation from 
one another. Building bridges between data of 
all types and sizes is one of the foundational 
challenges facing researchers in the era of Big 
Data.   

Data from the long tail of science contains rich 
information that can be used and reused to 
enable new scientific discoveries. To maximize 
this reuse, it must be as easy as possible to 
discover, access, and analyze relevant data. 
Discovering long tail data is hard because the 
data is often distributed in personal workspaces 
with little attempt made at data publication. 
Finding relevant data is made even more 
problematic by the difficulty in defining 
relevancy metrics for scientific datasets. 
Accessing relevant data is not easy when the 
data are distributed, not well documented, and 
in heterogeneous and possibly unique formats. 
These same characteristics also inhibit the 
analysis of data.   

DataBridge [3, 4] is an NSF-funded 
collaboration between University of North 
Carolina at Chapel Hill, Harvard University, and 
North Carolina A&T State University aimed at 

developing an e-Science collaboration 
environment tool designed specifically to 
measure the relevancy of different datasets. 
Measurement will be based on four general 
components: the contents of the data itself, 
contextual information about the data, 
producers and consumers of the data, and 
methods used to create and analyze the data. 
Using these relationships, profiles and clusters 
for datasets can be discovered and maintained 
that will help scientists seek, search, browse 
and identify data relevant to their research.  

Even though a large number of datasets still 
remain only stored in personal workspaces, 
without formal organization and metadata, 
successful efforts have been made to provide 
centralized data repositories to properly share, 
manage and archive scientific datasets. These 
efforts include the Dataverse Network (DVN) [5, 
6, 7, 8, 9] and the Integrated Rule-Oriented 
Data System (iRODS) [10, 11, 12, 13, 14, 15].  
The initial source for example datasets and 
metadata for the DataBridge research effort will 
be the Dataverse Network (DVN) because it 
offers a rich set of real-world structured data 
and metadata that will help validate the 
algorithms and analysis. The DVN is an e-
Science collaboration environment used to 
publish, share, reference, extract and analyze 
research data [5, 6, 7, 8]. A DVN hosts multiple, 
individually branded dataverses containing 
studies or collections of studies, and each study 
contains cataloging information that describes 
the data. The data section may contain primary 
and secondary data, code, and documentation 
files. The DVN serves many fields and uses, 
and complies with many content-agnostic 
standards. The repositories hosted at the 
University of North Carolina and at Harvard 
University hold more than 50,000 research 
studies with more than 700,000 data and 
supplementary files in social science. Recently, 
the software has been adopted for astronomy 
data and is being extended to support sensitive 
data in health and medical domains. One of the 
main advantages of the DVN is that it facilitates 
long term access and good archival practices 
for a researcher's data while the researcher 
retains control of, and recognition for, the data 
he or she deposits.  

A second source of datasets for this effort will 
be instantiations of the integrated Rule-Oriented 
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Data System (iRODS). iRODS [10] is a data grid 
middleware [11, 12, 13, 14, 15]. It provides 
many facilities for collection building, managing, 
querying, accessing, and preserving data in a 
distributed data grid framework. The iRODS 
system applies policy-based control when 
performing these functions. iRODS provides 
many advanced features, such as access to 
many types of storage (including third-party 
storage, like the Amazon Simple Storage 
Service, cloud computing, and the Virtual 
Computing Lab), data grids federation, and 
many diverse interfaces and access 
mechanisms. 

The remainder of this paper proceeds as 
follows: In section II, we introduce the concept 
of sociometric network analysis used to 
measure the relevance relationships among 
scientific datasets. In section III we describe the 
architecture of the DataBridge system.  In 
section IV, we present relevant work. We 
conclude the paper in section V.  

 

II   SOCIOMETRIC NETWORK ANALYSIS  

The DataBridge project seeks to build tools that 
will create a semantically-rich sociometric 
network of data that includes data from multiple 
disciplines. The founder of sociometry, Jacob L. 
Moreno, defined the field as “the inquiry into the 

evolution and organization of groups and the 
position of individuals within them [16]”. Moreno 
developed the first sociogram, a graph structure 
that represents social relationships by 
symbolizing individuals as nodes connected by 
links, or edges. These basic constructs have 
been extended in a number of ways by modern 
information network analysis. By applying 
sociometry and it’s derived techniques to the 
study of datasets the DataBridge project hopes 
to greatly increase the scientific value of data in 
the long tail of science. 

Detecting community structure, or clustering, in 
real systems is of great importance in sociology, 
biology, and computer science; disciplines 
where systems are often represented as 
graphs. Solving the community detection 
problem is still a difficult challenge, despite the 
huge effort [17, 18, 19] of a large 
interdisciplinary community of scientists working 
on it over the past few years. We will explore a 
broad range of community detection methods 
for DataBridge.  

The problem of community detection in graphs 
is not well defined and is therefore not 
amenable to the highest level of analytic rigor. 
The first task in graph clustering is to look for a 
quantitative definition for community. No 
definition is universally accepted [17, 18, 19] but 
for our purposes we define communities as 
groups of nodes similar to each other. The main 
goal is to minimize inter group node similarity 
and maximize intra group node similarity.  The 
similarity between each pair of nodes can be 
computed in several ways; examples include 
with respect to a reference property, local or 
global, and whether or not the nodes are 
connected by an edge. At the end of the 
process, each node ends up in the cluster of 
nodes to which it is most similar. A set of 
similarity measures is listed in Table 1. If we can 
express the nodes in a Euclidean space, we can 
use the distance between every pair as a 
measure of their similarity. Given the two data 
points A and B, one could use any norm   , like 
the Euclidean distance (   -norm [SM1]), the 
Manhattan distance (  -norm [SM2]), or the   -
norm [SM3] to measure their relative similarity. 
The cosine similarity [SM4] is yet another 
distance based norm. For nodes that cannot be 
embedded in space, we can derive the similarity 

Table 1. Similarity Measures (SM) 
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from the adjacency relationships between 
nodes. One possibility is to define a non-
Euclidean distance metric between nodes [20]. 
For this, we use the concept of structural 
equivalence [SM5] [18]. Two nodes are 
structurally equivalent if they have the same 
neighbors, whether or not they are adjacent. If i 
and j are structurally equivalent, by definition 
d    . We can also measure the overlap 

between the neighborhoods Γ(i) and Γ(j) of 
vertices i and j, given by the ratio between the 
intersection and the union of the neighborhoods 
[SM6]. Another possibility, similar to structural 
equivalence is the Pearson correlation [SM7]. 
Yet another metric is the number of edge- (or 
node-) independent paths between two nodes. 
Independent paths are paths that do not share 
any edges; their number is a measure of the 
maximum flow that can be conveyed between 
the two nodes [21]. We could also attempt to 
measure all paths running between two nodes. 
Unfortunately the total number of paths is 
infinite, but we can solve this difficulty by using 
a weighted sum of the number of paths. For 
instance, paths of length L can be weighted by 

the factor   , with    . We could also follow 
Estrada and Hatano [22, 23], and weigh paths 
of length L with the inverse factorial     . In both 
cases, the contribution of long paths is strongly 
suppressed and can be safely ignored. 

Another set of metrics of node similarity 
concerns properties of random walks on graphs. 
Commute-time between a pair of nodes is the 
average number of steps needed for a random 
traversal to complete a round trip between a 
pair of nodes. Saerens and coworkers [24, 25, 
26, 27] have extensively studied commute-time 
and it’s variants as a (dis)similarity measure: the 
commute time is inversely related to the 
similarity. The commute-time [28] is closely 
related to the resistance distance [29], which 
measures the effective electrical resistance 
between two nodes if the graph is turned into a 
resistor network. White and Smyth [17, 18] used 
the average number of steps needed to reach 
the target node for the first time from the source. 
Harel and Koren [30] proposed to build 
measures out of quantities like the probability to 
visit a target node in no more than a given 
number of steps after it leaves a source node 
and the probability that a random walker starting 
at a source visits the target exactly once before 

hitting the source again. Another quantity used 
to define similarity measures is the escape 
probability, defined as the probability that the 
walker reaches the target node before coming 
back to the source node [31]. The escape 
probability is related to the effective 
conductance between the two nodes in the 
equivalent resistor network. Other authors have 
exploited properties of modified random walks. 
For instance, the algorithm in [31, 32] used 
similarity measures derived from Google's 
PageRank process [33, 34]. 
 

III   THE DATABRIDGE 

The DataBridge system will analyze linkages 
between datasets. It will gather data, metadata, 
usage and other information, and apply SNA 
algorithms to develop a mapping of datasets 
connected by multi-dimensional relationships. In 
this multi-dimensional network, sub-graphs, 
clusters, and cliques will be used to inform the 
discovery of relevant datasets. The system will 
eventually gather information from multiple data 
resources maintained by individuals, projects, 
regional or disciplinary repositories, and national 
collaboratives in order to provide a semantically-
rich interface to discover relevant datasets 
based on relationships between data, users, 
methods and metadata. Internally, it will apply 
several relevance algorithms to build a 
knowledge base and generate interconnected 
networks. The DataBridge will provide a venue 
for scientists to publish, discover, and access 
datasets of importance and to find others 
engaged in similar and pertinent research.     
 

1   DATABRIDGE ARCHITECTURE 

DataBridge is an indexing mechanism for 
scientific datasets, similar to web search 
engines that help find web pages of interest. 
Unlike web search engines that use the textual 
content of a web page and hyperlinks to identify 
its relevance to a query, the search space for 
scientific datasets is quite different and will need 
external resources such as tags, metadata, 
contexts, and naming conventions to identify 
relevancy. Scientific datasets by themselves 
provide very sparse information content for 
search and discovery. A resource discovery 
system for scientific datasets should provide a 
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rich set of tools for mining information about the 
dataset and context. 

 Given a set of criteria such as a sample 
dataset, DataBridge will query its knowledge 
base to find relevant datasets that are close to 
the initial dataset based on the given criteria.   
To do this, the architecture of DataBridge will 
consist of three functional units shown in Figure 
1:  a data gatherer which interacts with data 
repositories to gather information about 
scientific datasets, a relevance engine which 
integrates information about datasets into a 
relevance network based on sociometric 
analysis, and a web-based user interface which 
searches for relevant datasets and gathers 
information through crowd sourcing and 
collaborative tagging. 

 
Figure 1. DataBridge Server Architecture 

 

1.1 THE DATA GATHERER UNIT 

The Data Gatherer Unit is a backend interface 
to data grids, data networks, and data 
repositories that will gather information about 
new and modified data from these sites. Several 
types of data providers and data integrators 
need to be queried to gather information about 

the scientific datasets they contain. Different 
data provisioning systems use different APIs, 
methods, and services for accessing data and 
metadata. Moreover, many of the datasets are 
located in individual labs or in personal 
repositories and are not available for access 
from the outside.  As a result, DataBridge must 
provide a simple way to register data into its 
system and provide access. 

For our initial research, we will gather data from 
two different types of data provisioning systems 
that have widespread adoption in the scientific 
community: the iRODS data grid system and the 
DVN system. These systems were chosen 
because of the diverse variety of domain data 
being disseminated through them and their 
access to rich metadata. Several of the 
research team members have been involved in 
the development of iRODS and the DVN. 
Another reason to choose systems such as 
iRODS and DVN is the support they provide for 
user usage information. Mining this information 
will provide different kinds of sociometric 
rankings that will help in focusing and narrowing 
search results.  

Not all domain scientists and data providers will 
be using one of the above systems supported 
by DataBridge. To ease integration and 
publication through DataBridge, we will 
eventually provide a simple server system that 
can be installed by users to provide access to 
their data. One can view this as a self-
publication mechanism for scientists to share 
their data (still under their control) with a wider 
audience by linking them through the 
DataBridge. We will design and develop this 
server system using our experience in iRODS 
and DVN to provide a publication service that is 
simple to install and maintain and captures all 
the sociometric data needed for our analysis.  
 

1.2   THE RELEVANCE ENGINE 

The relevance engine is the core of the 
DataBridge system design. It applies the 
metadata stored in the knowledge base of the 
Data Gatherer Unit to build, store, and access a 
multi-dimensional relevance network for all 
datasets known by the DataBridge system. The 
relevance network consists of nodes and edges, 
with each dataset forming a node and 
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connections between them defining edges.  
There can be multiple edges connecting nodes 
representing the multiple sociometric 
relationships derived between the datasets. The 
relevance engine will be extensible and 
adaptive. The architecture for the relevance 
engine will include a rule-based system of the 
Event-Condition-Action (ECA) type, which has 
been successfully used in iRODS. The Events 
will include data gathering, user access, and 
crowd sourcing input. The Conditions will be on 
types of datasets, metadata conditionals, and 
other user-defined parameters. The actions will 
be the application of relevance algorithms of the 
proper form to rebuild the relevance network. 
The extensibility of the system comes from the 
rule-based architecture. New rules and 
algorithms can be added in a modular fashion. 
We expect DataBridge to be primarily 
implemented in the Java language.  

We expect to build relevance networks 
connecting datasets to each other that will be 
computed multi-dimensionally based on the 
various criteria outlined in this paper. We will 
analyze and define a range of relevance 
dimensions for datasets across scholarly 
domains, based in part on input from domain 
scientists through crowd sourcing. Let us 
illustrate with some examples. Suppose dataset 
A and dataset B are analyzed using a particular 
method M. Even if they are not applied together, 
the two datasets have relevance because of the 
common application of method M.  For example, 
if a statistical procedure available in R is applied 
to two datasets to obtain an aggregation 
measure, the two datasets become procedurally 
relevant (high similarity index in the method 
plane) even if one set of data is about rainfall 
and the other about astronomy.  One idea that 
we will study is that if A and B are relevant 
through M, and A is also applied through 
another method M’, then B is also a candidate 
for M’, and M’ can be suggested as a relevant 
method for B. The aim is to cross-pollinate 
methods and applications across scientific 
domains. Another dimension of data-to-data 
relevance is through users. If user U has used 
data A and B, and user U’ is interested in using 
A, then the system can suggest B to user U’. 
We will define relevance rules (without 
compromising privacy) to extract such 
sociometric data. Relevance algorithms and 

methods of interest are addressed in more 
detail in Sections III.2 and III.3. 
 

1.3 THE USER INTERFACE  

The User Interface for DataBridge plays three 
roles: a query interface for users to discover 
relevant data, a crowd sourcing interface for 
users to add more information to the knowledge 
base and improve the relevance calculation, 
and an ingestion interface that can mediate 
between the user and data repositories and 
data grids. These interfaces will be web service-
based so that external products and partners 
can integrate the DataBridge functionality into 
existing packages such as DVN and iRODS. 
We will also implement a graphical user 
interface that will utilize the web services. 
 

2   RELEVANCE INFORMATION 

The Data Gatherer unit will harvest data and 
metadata that will be analyzed to discover 
relevance between datasets. The gathered 
information will be stored in the knowledge 
base. The types of information that will be 
gathered are discussed in this section. 

Datasets will be mined for important contextual 
information available in the format of the 
dataset. We will implement several “scrapers” to 
mine metadata information. These scrapers will 
be particularly useful for legacy data in 
spreadsheets and text documents that contain 
heading, title, and other information which when 
matched against an ontology of a particular 
discipline will provide contextual information for 
relevance.  Other types of information that can 
be mined include temporal, spatial, and 
geographic information that are embedded in 
the datasets themselves. Specific analysis 
algorithms can also be performed on particular 
types of data, and the features of the data can 
be used as metadata in the knowledge base. 
For example, one can extract minimum, 
maximum, and average rainfall information from 
a particular dataset and associate it as 
metadata. This can be used to quickly find 
which regions have heavier rainfall on a 
particular time period and can be used to 
associate one dataset with another. Similar 
functional features can be detected from 
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environmental, astronomical, sociological, and 
other types of data. The Data Gathering Unit will 
provide the capability to register new feature 
detection algorithms, associate them with types 
of datasets, and automatically use them to cull 
important information into the relevance network 
knowledge base. These feature detection 
functions can be simple (identify all dates) or 
complex (perform a workflow to extract a 
hurricane from satellite images).  

Metadata will also play an important role in 
deriving relationships between datasets. We will 
use structured, semi-structured, and key-value 
metadata to show how one dataset is connected 
to another. One can view such connections as 
semantic relationships between datasets based 
on common metadata. Additionally, associations 
between datasets can be determined based on 
their derivation relationship. Capturing how one 
dataset is derived from another will provide rich 
linkages. We expect to mine and apply such 
lineage and provenance information to define 
additional relationships between datasets. 
iRODS and DVN provide access to descriptive 
and systemic metadata that can be useful for 
relevance analysis.  

Audit trails that contain user usage behavior are 
another source of relevance information. iRODS 
and DVN have user bases that are associated 
with their data repositories. Some of the 
repositories keep audit trails for user access of 
datasets as well as some of the operations that 
users perform on those datasets. These audit 
trails can provide rich sociometric information 
about what types of data are of interest to a 
user and for matching users with similar 
interests. A problem of interest is how to extract 
sociometric information from audit trails without 
compromising privacy. We plan to research and 
create algorithms for audit-trail anonymization 
and aggregation techniques for extracting 
sociometric data.  PINQ is a good potential 
framework to query the audit trail with privacy 
protection.  PINQ is a LINQ-like API for 
computing privacy-sensitive datasets while 
providing guarantees of differential privacy for 
the underlying records [35, 36]. Our research 
will investigate what types of audit trails are 
necessary and sufficient to extract sociometric 
information to improve discovery and sharing 
without compromising privacy. 

What methods and services are used (or 
applicable) to a dataset provides another kind of 
relationship between datasets. If the same or 
similar method is applied to two different 
datasets, there may be a relationship between 
the two. Some types of method relationships are 
likely to indicate a closer relationship than 
others; for example, calculating a mean or 
variance relationship on each of two datasets 
likely implies less about the relationship 
between the two than using each of them as an 
input to a computational fluid dynamics model.  

Finally, publications are another concrete 
source of relevance information about datasets 
that have been used for successful research. 
Increasingly, publishers require proper citation 
and public release of data sources.  Although 
there is much room for improvement, many 
publications now have a proper citation for the 
data used in the research. The DVN supports a 
standard persistent data citation method 
proposed by [37, 38, 39], and the DVN team is 
involved in several efforts to help standardize it 
into other domains such as DataOne [40]. The 
use of the data in publications is ultimate 
evidence that these data are relevant and useful 
for certain users and types of research. One of 
the biggest challenges in machine learning 
algorithms is to find “gold standard” data to train 
models and evaluate the results.  Data citations 
can be used to build gold standards for 
sociometric measurements that connect data.  
In addition to verifying the sociometric network 
built by the DataBridge, these data will be used 
to identify sets of data from past collaborations 
and to learn patterns of collaborations.  

3   RELEVANCE ALGORITHMS 

Relevance metrics will be used to connect data 
in a network for discovering multi-dimensional 
similarities between datasets.  We propose to 
research and implement relevance metrics 
across a broad range of types as described 
below. 

3.1 DATA TO DATA CONNECTIONS 

We expect to use techniques in Natural 
Language Processing (NLP) to measure 
semantic similarity of datasets to infer the topic 
space as latent classes. Methods such as 
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Probabilistic Latent Semantic Analysis (PLSA) 
will be used to identify both synonyms (words 
that refer to the same topic) and polysemy 
(words with multiple meanings) in a corpus of 
abstracts by modeling each document as a 
mixture of unigram model topics. The topics are 
modeled as latent classes that regulate the 
probability distribution of words in a given 
document as follows where p(zk) is the 
probability of topic zk: 

  d      ∑        d             
 

   
.    

Expectation Maximization algorithms are widely 

used to estimate the model p(   d     ).  Once 

the topic space is formed for a given set of 
documents, queries can be handled in the 
projected topic space by calculating the cosine 
distance, a method which is more accurate than 
using key words. However, the parameterization 
of the PLSA model is susceptible to over-fitting 
and there is no obvious way to infer about new 
documents not seen in the training data.  Latent 
Dirichlet Allocation (LDA) addresses these 
limitations by using a more general Bayesian 
probabilistic topic model [41].  There are many 
extensions to the PLSA and LDA models that 
differ in how they vary this basic generation 
process and what statistical assumptions are 
made. All current probabilistic topic models are 
based on the fundamental idea that documents 
are mixtures of topics, where a topic is 
represented by a multinomial distribution of 
words (a unigram language model). The main 
limitations of these methods are that they are 
computationally expensive and can only handle 
a modest sized corpus.  

In DataBridge, we will compare different 
probabilistic topic models to determine which 
work best to cluster a corpus of short abstracts, 
explore effective metrics for sampling the 
abstracts to be projected together using these 
models, and methods to effectively scale these 
models (i.e. layer the topic space). We will 
further compare the effectiveness of these 
methods to random projections, which can scale 
to handle a large corpus. We expect to use and 
contribute to the open source semantic vector 
package in applying random projections [42]. 

The ability to understand and link data across 
the many types of data and research disciplines 

hinges on the quality of metadata available to 
describe these data. Archives and researchers 
are tasked with creating these valuable 
metadata, but the current process is very labor 
intensive. Archives and repositories are faced 
with the decision to process many datasets with 
minimum description or process fewer datasets 
and take time to create a more detailed 
description. The DataBridge research plan 
includes a RESTful web service that allows 
automated metadata generation based upon 
information discovered during relevance engine 
processing. This new interface will automatically 
suggest topics and keywords to researchers 
uploading and ingesting data into repositories 
by pre-tagging the projected topic space with 
appropriate terms. Researchers will be 
presented with easy to select metadata options 
that help them describe their data relative to 
other data discovered by the system and 
matched to the new data via the investigation of 
variable level and data abstract discovery tools.  
We will measure the effectiveness of this pre-
tagging by tracking how many users pick one of 
the suggested topics and explore the 
appropriate range in the cosine distance for 
effective suggestions. Accurate suggestions will 
encourage accurate crowd sourced tagging of 
the ingested data. Since quality assurance is 
one of the biggest challenges of crowd sourcing, 
adding a good NLP module for semantic 
processing of the abstract is expected to have a 
significant impact on improving the metadata. 
The addition of DataBridge to the ingest process 
will enhance automated metadata creation and 
feed more precise metadata back into the 
process. As DataBridge builds more 
connections, the intelligent metadata creation 
process has better data to work with and the 
relevance engine has the ability to provide more 
accurate results. This researcher 
guided/machine-learning metadata creation 
environment will have a profound impact on the 
future of data discovery and reuse [43].  
 

3.2 USER TO DATA CONNECTIONS 

Currently searchable metadata on the DVN 
includes authors, producers, distributors, 
provenance, and geographic and time coverage 
of a dataset. DataBridge will extend beyond 
passive searching, allowing us to better 
understand and even predict possible future 
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collaborations.  We will crawl published papers 
that use data stored in DVN to identify dataset 
relationships that have been manifested in 
previous collaborations and to discover and 
explore collaboration patterns based on features 
extracted from the given datasets. Using these 
patterns, we will build models of collaboration to 
predict data connections.  

We also plan to gather datasets usage patterns 
to connect users to datasets. If a user U uses 
dataset A and dataset B at a later time, one can 
infer a weak linkage. Based on the (semantic) 
types of the two data one can infer a link 
between user and data types. This link can be 
reinforced if similar usage patterns are repeated 
with other datasets. Similar connections can 
also be drawn about users and the data they 
submit (or own) to the DataBridge. Patterns 
connecting users and datasets can also provide 
linkages between users who have similar 
patterns of data usage and ownership.  A similar 
connection can be made comparing methods 
and processes (or workflows) that a user 
applies. We believe that there are several such 
types of patterns that can be gleaned through 
usage patterns and we will characterize such a 
class of linkages as part of the DataBridge 
project.  

When discovering other relevant data, data 
quality becomes as important as the relevance 
of the data to the topic. The importance of 
quality can be illustrated with a basic search on 
the web.  The underlying method used in search 
engines such as Google and PageRank is 
based on measuring quality of a webpage using 
links [33, 34].  In direct marketing, RFM 
(Recency, Frequency, and Monetary value) is 
the accepted norm for predicting potential future 
customers [44]. Recent activity is the first and 
most important factor for predicting customers 
likely to make another purchase.  Following 
these ideas, DataBridge will use metadata on 
download frequencies and times of download as 
a measure of the quality of the data. Different 
research topics become popular at different 
times. DataBridge will also measure recency as 
defined by when data download activity occurs. 
We will also explore metrics to evaluate data 
reliability based on authors, producers, 
distributors, and data provenance. 

Once we have built a comprehensive network of 
data, we will use it to connect users. Currently, 
iRODS has capabilities to monitor usage 
patterns, but the DVN is open access with no 
monitoring of user behavior beyond IP address 
tracking. Login-based user tracking will be 
important for connecting researchers with each 
other in the DataBridge system, so as part of 
this project, we will incorporate Shibboleth [45] 
into DVN for tracking users. With Shibboleth 
implemented, we will build user profiles to help 
connect users to users and users to data. Data 
used for building user profiles will include a 
researcher’s download history, search history, 
published papers, and authorship of data 
uploads.   

Collaborative Filtering (CF) is a technique 
commonly used by recommender systems for 
making automatic predictions (filtering) about 
the interests of a user by collecting preference 
information from many users (collaborating) 
[46]. In DataBridge, user interest is expressed in 
terms of interest in particular datasets as Y/N.  
Thus, we can build a user data matrix, then use 
the cosine distance to explore the data to data 
connection in the matrix. The main challenges in 
using CF are data sparsity in the beginning, 
which leads to cold start, and problems with 
scalability. The underlying assumption is that 
two researchers who have similar interests on 
one domain are likely to have similar interests in 
other domains. However, there are also many 
scientists who might not follow this data use 
pattern.  For example, there could be a scientist 
who is the only computer scientist interested in 
social welfare. Indeed, how similar are 
scientists’ data use patterns is one of the 
research questions we plan to investigate.  
 

3.3 METHODS TO DATA CONNECTIONS 

The use of particular models and methods to 
analyze datasets provides rich data for mining 
sociometric information. Metadata concerning 
the usage of datasets can be considered a 
measure of the similarity between the datasets. 
Usage methods and applications can be viewed 
as properties of the datasets and can be used to 
determine relevance between datasets. To 
enable this we will need to define an ontology of 
methods, tools, and applications. The ontology 
will have a hierarchical structure (possibly 
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shallow) and will map methodologies into a tree 
structure. We plan to define such an ontology 
using actual programs and software as 
elements of that ontology. In our research, we 
will implement relevance algorithms that will use 
the method ontology to help define a relevance 
network. 
 

3.4 OTHER CONNECTIONS 

As part of our analysis in finding linkages 
between data, we will derive other significant 
connections that will provide insight into 
additional sociometric relationships. The first 
such type of connection will be between people 
based solely on their interactions through 
common datasets. Examples of relationships 
that will emerge include producer-consumer (of 
data or methods) and same or similar 
data/method user. A second type of connection 
that we can establish through data will be 
between methods. Two methods applied to the 
same dataset will be considered to be linked 
semantically – either in a producer-consumer 
fashion, or defining similar input-output 
relationships or defining similar functionalities. 
Finally, one can also associate methods and 
users and derive relationships between them. 
Using such a relationship, the system can 
suggest alternative methods to a user based on 
similar user usage models. 

 

4   IMPLEMENTATION  

As part of our first year activities, we have 
begun building a prototype of the DataBridge 
system. For this prototype, we are focusing on 
the over 50,000 datasets available on the DVN 
hosted at the Odum Institute [47]. In the initial 
prototype, the DataBridge utilizes the rich 
metadata that is already prepopulated in this 
DVN. Starting with a particular DVN instance, 
like the one at Odum Institute, a metadata 
gatherer collects all metadata for all datasets in 
the DVN using a web crawler that can scrape 
the information rooted at the main public DVN 
website.  For evaluation purposes, we have 
implemented a metadata and ontology database 
to store this information using two different 
graph database systems, Neo4j [48] and 
titan+hbase [49]. This database, however 
implemented, represents the unprocessed 

nodes of the network that are the basis of the 
DataBridge knowledge base. The relevance 
engine processes this information to calculate 
the similarity of the nodes using various 
relevance algorithms discussed in this paper.  
Currently we have a basic relevance engine 
which uses an overlap similarity algorithm to 
produce similarity matrices from the metadata. 
These similarity matrices represent the edges in 
the network.  It is important to recognize that 
there can be multiple dimensions in the network 
which are represented by multiple edges 
connecting two nodes.  For example, one edge 
might represent the Jaccard index, the number 
of common elements over all elements, 
between keywords for two datasets, while 
another edge might represent a similarity 
measure relating the original publishers of the 
data sets.  In this manner, the DataBridge will 
build and store a multi-dimensional relevance 
network for all datasets known by the 
DataBridge system.  Finally, this multi-
dimensional relevance network information is 
made available to scientists via a visualization 
and query component currently implemented in 
JavaScript using the d3.js [50] library.  The 
different components of the system are loosely 
coupled via a message oriented communication 
backbone based on the publish-notify-subscribe 
paradigm. The current implementation uses 
RabbitMQ [51], an implementation of the 
Advanced Message Queuing Protocol. 
 

IV    RELATED WORK 

1   DATA PUBLICATION & DISTRIBUTION 

Large-scale projects provide a venue for data 
publication and distribution. National projects 
such as DataONE (Dataone) [40], Datanet 
Federation Consortium (DFC) [52], the 
Consortium of Universities for the Advancement 
of Hydrologic Science (CUHASI) [53], iPlant 
Consortium (IPC) [54], and the Ocean 
Observatories Initiative (OOI) [55] are large 
consortium-based projects that collect and 
provide access to disciplinary data collections. 
What is lacking, however, is a network that 
connects datasets such that the whole becomes 
greater than the sum of its parts – connections 
based on similarities beyond normal textual 
connections within the silos of single disciplines.  
Scientific collaboration tools have been 
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developed that help scientists build collections 
for their projects.  These include middleware 
systems such as iRODS [10] that allow 
collaboration across data grids by abstracting 
the storage architecture and enforcing policies 
on the data.  Additionally, communities built 
around repository software like DuraSpace [56], 
Islandora [57], or Fedora Commons [58] allow 
researchers and curators to build digital 
collections important to communities of interest 
for sharing and preservation. The Dataverse 
Network [7] is a collaboration tool that gives 
archivists, researchers, and publishers an open 
source application to publish, share, reference, 
extract and analyze research data.  Missing 
from these works is an explicit focus on the 
relationships among datasets.  DataBridge 
seeks to provide relationships between datasets 
and provide these links back to scientific 
collaboration environments. 
 

2   DATA DISCOVERY 

Other researchers have begun to explore how 
to link datasets.  Tools such as SciVal, 
CiteSeerX and DataCite, for example, are 
designed around metadata schemas. CiteSeerX 
includes some additional techniques such as 
automatic metadata harvesting from indexed 
articles and crowd sourcing of opinions about 
articles, but still does not address datasets. 
DataCite is designed to make it easier for 
researchers to find relevant datasets by 
collecting metadata, providing a search 
capability, and assigning persistent data 
identifiers to assist in citing and publication, but 
it lacks any of the sociometric infrastructure we 
intend to build in the DataBridge. In relation to 
scholarly communication, the role of automatic 
metadata generation is being researched and 
tested as a method to help increase 
discoverability, access, and efficiency [59, 60, 
61].  In today’s digital information age, many 
now consider datasets unique units of scholarly 
communication in their own right [62, 63]. SEAD 
[64] is also concerned with sustainability of 
datasets in the long tail of science and proposes 
to provide a data repository for scientists to 
manage, share, and link their data with others. 
However, the linking is done manually by users 
and not through automatic analysis as proposed 
here. The Linked Data project (linkeddata.org) 
links data through the use of a data description 

language, but the description is not generated 
by analysis as we propose. Google Scholar 
allows the user to search a wide variety of 
sources, including books and some web sites, 
but has neither a sociometric component nor a 
focus on datasets. Google does focus on the 
sociometry of datasets, but these datasets are 
limited to what are presented on HTTP servers 
that can be crawled and are normally 
unstructured text or images. Another related 
project is the CASRAI [65] program, which is 
focused on developing common metadata 
standards to allow for linking research 
information to facilitate data exchange, 
collaboration, and interaction with funding 
agencies. 
 

3   COMPUTER-ASSISTED CLUSTERING 

Computer-assisted methods to discover clusters 
(or partitions) in large corpora of unstructured 
text [66] differs from the clustering methods 
discussed in section II as they allow users to 
interact with the clustering space until they find 
a result useful and tuned to their needs. The 
computer-assisted method encompasses five 
main steps: 1) calculate the word count matrix 
of an entire document set, 2) apply more than 
one hundred clustering methods to the 
numerical representation calculated in the first 
step and obtain the respective clustering 
solutions, 3) calculate a similarity distance 
between clusters based on the number of pairs 
of documents not placed together from one 
cluster to another, 4) project this matrix of 
distances across all clusters into a two-
dimensional Euclidean space, 5) calculate new 
clustering solutions at a given point in the space 
of clusters from a weighted average of the 
nearby pre-calculated clusters. Separately, 
several of us (King and Crosas) are developing 
a clustering discovery and exploration tool 
(Consilience.com) that uses this method to 
interactively explore and select insightful 
clustering solutions. 

Both types of methods - fully automated and 
computer-assisted - can be applied to 
categorize collections of datasets.  The fully 
automated methods generate general solutions 
for all users, while the computer-assisted 
method offers a thorough exploration of the 
clustering space to obtain the most optimal 
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solution for each user. In the case of the 
computer-assisted method described here, the 
text input will be all the metadata associated 
with each dataset in the collection. 
 

V   CONCLUSION 

This paper outlines the design philosophy 
behind DataBridge – an e-Science collaboration 
system that enables researchers to discover 
new modalities of linkages between datasets. 
The main thrust of the project is to apply SNA 
and other relevance algorithms to define 
different types of semantic bridges that link 
large quantities of diverse datasets in the long 
tail of science.  
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